

SOURCE EMISSIONS MONITORING - LION CO

TOOHEYS - MARCH 2021

Project ID. 13594

R_O

DATE OF RELEASE: 6/04/2021

Unit 7, 142 Tennyson Memorial Avenue, Tennyson, Queensland, 4105 Unit 17, 538 Gardeners Road, Alexandra, NSW, 2015

Table 1: Document approval

	Name	Position Title	Signature	Date
Author	Jos Mills	Technician	Jos Mills	31/03/2021
Reviewer	David Arbuckle	General Manager	P.I.L.	6/04/2021
Approver	David Arbuckle	General Manager	Pill.	6/04/2021

Table 2: Revision register

Revision	Date	lssuer	Recipient	Comment
R_O	6/04/2021	David Arbuckle	lan Porter	Initial release

DISCLAIMER

Assured Environmental acts in all professional matters as a faithful advisor to the Client and exercises all reasonable skill and care in the provision of its professional services.

Reports are commissioned by and prepared for the exclusive use of the Client. They are subject to and issued in accordance with the agreement between the Client and Assured Environmental. Assured Environmental is not responsible for any liability and accepts no responsibility whatsoever arising from the misapplication or misinterpretation by third parties of the contents of its reports.

Except where expressly stated, Assured Environmental does not attempt to verify the accuracy, validity or comprehensiveness of any information supplied to Assured Environmental for its reports.

Reports cannot be copied or reproduced in whole or part for any purpose without the prior written agreement of Assured Environmental.

Where site inspections, testing or fieldwork have taken place, the report is based on the information made available by the client or their nominees during the visit, visual observations, and any subsequent discussions with regulatory authorities. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Assured Environmental is both complete and accurate. It is further assumed that normal activities were being undertaken at the site on the day of the site visit(s), unless explicitly stated otherwise.

ACCREDITED FOR COMPLIANCE TO ISO/IEC 17025

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accreditation ID: 19703

EXECUTIVE SUMMARY

The following table provides a summary of results from emissions monitoring conducted from the exhaust of the co-generator exhaust stack located on at the Lion Co, Toohey's Brewery in Lidcombe, NSW. Sampling was conducted on 19th March 2021 to meet the requirements of NSW EPL 1167. In summary;

- Oxides of nitrogen (NOx) concentration was below the EPL limit of 250 mg/Nm³
- Total VOC concentration was above the EPL limit of 40 mg/Nm³

Parameter		Average Results	GUIDELINE LIMIT	unit of measure	Pass/Fail
Gas temperature		208	na	°C	na
Exit velocity		20.9	na	m/s	na
Oxygen		10.1	na	%v/v	na
Carbon dioxide		6.28	na	%v/v	na
Stack gas water vapour content		11.4	na	%v/v	na
Oxides of nitrogen (NOx) at $5\%O_2$		244	250	mg/Nm ³	Pass
Total VOCs as n-propane	<	0.646	40	mg/Nm³	Pass

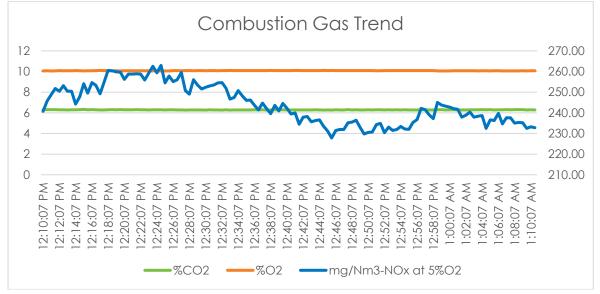


Figure 1: Combustion Gas trend – 19th March 2021

TABLE OF CONTENTS

1	INTR	ODUCTION	. 5
2	MET	HODOLGY & EQUIPMENT	. 5
	2.1	Sampling methodology	
	2.2	SAMPLING LOCATION	
	2.3	Test equipment	.8
3	QUA	ALITY ASSURANCE & QUALITY CONTROL (QA/QC)	. 9
4	DEFI	INITIONS	0
5	RESU	JLTS 1	1
6	OPE	RATING CONDITIONS	12
7	RELE	VANT NSW EPA EPL 1167 EXTRACTS	5
8	LAB	ANALYTICAL TEST DATA	6
	8.1	CHAIN OF CUSTODY	
	8.2	Test Safe Australia Analytical Report	17

LIST OF TABLES

TABLE 1: DOCUMENT APPROVAL	
Table 2: Revision register	
Table 3: Executive summary	
Table 4: Test methods & EPL limits	5
Table 5: Analysis notes	5
Table 6: Deviations	5
Table 7: Sampling data QA/QC checklist	9
Table 8: Laboratory data QA/QC checklist	9
Table 9: Definitions	10
Table 10: Results summary	11

LIST OF FIGURES

Figure 1: Combustion Gas trend – 19™ March 2021	, .
Figure 2: Site location	6
Figure 3: Co-Gen emission point	6
Figure 4: EWP used for testing	7
FIGURE 5: EWP AND CO-GEN STACK	7
Figure 6: Ammonia Sampling Train (Apex Instruments)	8
Figure 7: Test Analyser	8
Figure 8: EPL 1167 Limits	15
Figure 9: EPL 1167 Frequency & Test Methods	15

1 INTRODUCTION

Assured Environmental (AE) was appointed by Lion Co Pty Ltd to monitor stack emissions from the 2MW natural gas co-generation engine operating at the Lion Co, Toohey's Brewery in Lidcombe as per conditions listed in NSW EPA EPL 1167. Sampling was conducted by AE on the 19th of March 2021. Refer to section 6 for the co-generators operating conditions during the test period.

AE was responsible for the collection and analysis of samples, unless otherwise indicated. The samples were recovered and stored in the appropriate manner until their return to the laboratory where the samples were prepared and analysed according to the methodologies listed below in this report.

2 METHODOLGY & EQUIPMENT

2.1 Sampling methodology

All sampling and analysis were carried in accordance with the listed requirements in Table 4. Any deviations to these methods have been documented as required.

PARAMETERS	Unit	NSW EPA TM	Reference Test Method	NATA	EPL limit
Traverse point selection	N/A	TM-1	AS4323.1	Yes	Na
Stack gas velocity	m/s	TM-2	USEPA Method 2	Yes	Na
Volumetric flow rate	m³/s	TM-2	USEPA Method 2	Yes	Na
Moisture	%	TM-22	USEPA Method 4	Yes	Na
Stack gas temperature	°C	TM-22	USEPA Method 2	Yes	Na
Oxides of nitrogen (NO + NO ₂)	mg/m ³	TM-11	USEPA Method 7E	Yes	250ª
Volatile organic compounds ^b	mg/m ³	TM-32	USEPA Method 18	Yes	40 ^c

Table 4: Test methods & EPL limits

Table 5: Analysis notes

Note	Company	Work performed	NATA ID	Report Number
1	Assured Environmental	Sampling & analysis	19703	13594
2	Test Safe Australia	VOC Analysis	3726	2021-1369-[ROO]

Table 6: Deviations

Note	Comment
A	Pre $arepsilon$ post calibration of the analyser was completed in the AE laboratory.

^a mg/Nm³ referenced to 5% oxygen.

^b Speciated and total as n-propane – 1 sample taken over approximately 30 minutes.

^c mg/Nm³ as n-propane equivalent referenced to 5% oxygen.

2.2 Sampling location

The below images illustrate the Toohey's Brewery site and sample locations.

Figure 2: Site location

Figure 3: Co-Gen emission point

Figure 4: EWP used for testing

Figure 5: EWP and Co-Gen stack

2.3 Test equipment

All equipment used for the testing meets or exceeds all relevant performance standards as required by all jurisdictions. Our isokinetic and non-isokinetic equipment used for this project was from Apex Instruments^d. Combustion gases were monitored using a Testo 350XL flue gas analyser.

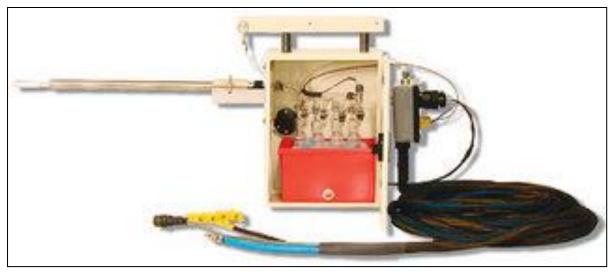


Figure 6: VOC Sampling Train (Apex Instruments^e)

Figure 7: Test Analyser

^dhttp://www.apexinst.com/

^e A sampling train like this was used. A carbon tube was placed in line after the first knock out impinger.

3 QUALITY ASSURANCE & QUALITY CONTROL (QA/QC)

AE operates within a quality system based upon the requirements of ISO17025. Our quality system defines specific procedures and methodologies to ensure any project undertaken by AE is conducted with the highest level of quality given the specific confines of each project. The overall objective of our QA/QC procedures is to representatively sample and accurately analyse components in the gas streams and therefore report valid measurements of emission concentrations.

To ensure representativeness of field work, our quality procedures target:

- 1. Correct sampling locations
- 2. Sample time
- 3. Frequency of samples and
- 4. Method selection & adherence

To ensure <u>representativeness of lab work</u>, our quality procedures target:

- 1. Sample preservation
- 2. Chain of custody (COC)
- 3. Sample preparation and
- 4. Analytical techniques

AE maintains strict quality assurance throughout all its sampling programs, covering on-site 'field work' and the analytical phase of our projects. Our QA program covers the calibration of all sampling and analytical apparatus where applicable and the use of spikes, replicate sample and reference standards. The test methodologies used for this project are outlined in section 2 of this document. Field test data has been recorded and calculated using direct entry into Microsoft Excel spreadsheets following the procedures of the appropriate test methods. Determination of emission concentrations has been performed using the same MS Excel spreadsheets which are partially supplied as an attachment to this report. More detailed information can be supplied upon request.

QA/QC checks for this project will use validation techniques and criteria appropriate to the type of data and the purpose of the measurement to approve the test report. Records of all data will be maintained. Complete chain of custody (COC) procedures has been followed to document the entire custodial history of each sample. The COC forms also served as a laboratory sheet detailing sample ID and analysis requirements.

 Table 7: Sampling data QA/QC checklist

Sampling Data QA/QC Checklist	Comment		
Use of appropriate test methods	Yes		
'Normal' operation of the process being tested	Yes – as instructed by client		
Use of properly operating and calibrated test equipment	Yes		
Use of high purity reagents	Yes		
Performance of leak checks post sample (at least)	Yes		

Table 8: Laboratory data QA/QC checklist

Laboratory Data QA/QC Checklist	Comment
Use of appropriate analytical methods	Yes
Use of properly operating and calibrated analytical equipment	Yes
Precision and accuracy comparable to that achieved in similar projects	Yes
Accurate reporting	Yes

4 DEFINITIONS

The following terms and abbreviations may be used in this report:

Table 9: Definitions

Symbol	Definition
<	The analytes tested for was not detected; the value stated is the reportable limit of detection
Am³	Gas volume in cubic metres at measured conditions
AS	Australian Standard
BH	Back half of sample train (filter holder and impingers) (referred to during sample recovery)
°C	Degrees Celsius
dscm	dry standard cubic meters
FH	Front half of sample train (probe and filter holder) (referred to during sample recovery)
g	Grams
kg	Kilograms
m	Metres
m³	actual gas volume in cubic metres as measured
mbar	Millibars
mg	Milligrams (10 ⁻³ grams)
min	Minute
ml	Millilitres
mmH ₂ O	Millimetres of water
Mole	SI unit that measures the amount of substance
N/A	Not applicable
n/a	Not applicable
Nm³	Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3 kPa)
NMI	National Measurement Institute
NM VOC	Non methane volatile organic compound
NR	Not required on this occasion
PM	Particulate matter
ppb	Parts per billion
ppm	Parts per million
sec	Second
Sm ³	Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3 kPa) and corrected to a standardised value (e.g. 15% O_2)
STP	Standard temperature and pressure (0°C and 101.3 kPa)
USEPA	United States Environmental Protection Authority

5 **RESULTS**

Table 10 presents a summary of the sample run.

Table 10: Results summary

Source Data		Stack SDS version - 3.28	
Client		Lion CO	
Site		Tooheys	
Sample Point		Co-GEN	
Reference Method		M18 - CONSTANT FLOW	
Test Parameters		VOCs & Gases	
Process conditions		Normal	
Historical Data & Hardware Information - Manual Sample			
Run Start Date		19/03/2021	dd-mm-yyyy
Project ID		13594	
Run ID		-1	
Run Start Time	Ti	12:10	hh:mm
Run Stop Time	Tf	12:55	hh:mm
Positioning compliance check with AS4323.1		Non-ideal	
Flow & temperature compliance check with AS4323.1		YES	
Traverse pt factors; up, down, total & trav pts		1.15, 1, 1.15, 12	
Console Serial Number		gm4	
Meter Calibration Factor	(Y)	1.000	
Orifice Coefficient		N/A	(DH _@)
Pitot Tube Coefficient	(C _p)	0.81	s per
Actual Nozzle Diameter	(D _{na})	N/A	mm
Stack Test Data	(-147		
Initial Meter Volume	(V _m) _i	8.0120	m ³
Final Meter Volume	(V _m) _t	8.0550	m ³
Actual Sampling Time	(Q)	60.0	minutes
Actual Samping Time Average Meter Temperature	(t _m) _{avo}	26.00	°C
		208.33	°C
Average Stack Temperature	(t _s) _{avg}		
Barometric Pressure	(P _b)	1022	mb
Stack Static Pressure	(P _{static})	10.00	mm H ₂ O
Absolute Stack Pressure	(P _s)	1023	mb
Sample Volumes			
Actual Meter Volume	(V _m)	0.0430	m³
Standard Meter Volume	(V _m) _{std}	0.0396	Nm ³
Moisture Content Data			
Water vapour concentration	(B _{ws(calc)})	11.40	%
Stack Gas Density Analysis Data			
Carbon Dioxide Percentage	(%CO ₂)	6.28	%
Oxygen Percentage	(%O ₂)	10.08	%
Carbon Monoxide Percentage	(%CO)	0.051	%
Nitrogen Percentage	(%N ₂)	83.64	%
Dry Gas Molecular Weight	(M _d)	1.313	kg/Nm ³
Dry Gas Molecular Weight	(M _d)	29.4	g/g-mole
Wet Stack Gas Molecular Weight		28.1	
	(M ₂)		d/d-mole
2	(M _s)		g/g-mole
Volumetric Flow Rate Data (at Sample Plane)			
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity	(V _s)	20.93	m/sec
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter	(v _s) Ds	20.93 0.480	m/sec m
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area	(v _s) Ds (A _s)	20.93 0.480 0.181	m/sec m m ²
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance)	(v _s) Ds (A _s) B	20.93 0.480 0.181 1.40	m/sec m m ² m
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance)	(v _s) Ds (A _s) B A	20.93 0.480 0.181 1.40 1.90	m/sec m m ² m m
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate	(v _s) Ds (A _s) B A (Q _{aw})	20.93 0.480 0.181 1.40 1.90 227.2	m/sec m m ² m m m m ³ /min
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate	(V _s) Ds (A _s) B A (Q _{aw}) (Q _{sw})	20.93 0.480 0.181 1.40 1.90 227.2 130.2	m/sec m m ² m m m ³ /min
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate	(v _s) Ds (A _s) B A (Q _{aw}) (Q _{sw}) (Q _{sd})	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4	m/sec m m ² m m m ³ /min Nm ³ /min-we Nm ³ /min-dry
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate	(V _s) Ds (A _s) B A (Q _{aw}) (Q _{sw})	20.93 0.480 0.181 1.40 1.90 227.2 130.2	m/sec m m ² m m m ³ /min
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Particulate Uncertainty Calculation	(V_s) Ds (A_s) B A (Q_{aw}) (Q_{sw}) (Q_{sw}) (Q_{sd}) (I)	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A	m/sec m m ² m m ³ /min Nm ³ /min-wet Nm ³ /min-dry %
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Particulate Uncertainty Calculation Uncertainty expressed at 95%CI	(V _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U)	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal.	m/sec m m ² m m ³ /min Nm ³ /min-wel Nm ³ /min-wel Nm ³ /min-dry %
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Particulate Uncertainty Calculation Uncertainty expressed at 95%CI	(V_s) Ds (A_s) B A (Q_{aw}) (Q_{sw}) (Q_{sw}) (Q_{sd}) (I)	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A	m/sec m m ² m m ³ /min Nm ³ /min-we Nm ³ /min-dry %
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Particulate Uncertainty Calculation Uncertainty expressed at 95%CI	(V _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U)	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal.	m/sec m m ² m m m ³ /min Nm ³ /min-we Nm ³ /min-dry %
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Particulate Uncertainty Calculation Uncertainty expressed at 95%CI	(V _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U)	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal.	m/sec m m ² m m m ³ /min Nm ³ /min-we Nm ³ /min-dry %
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Particulate Uncertainty Calculation Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI	(V _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U)	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal. Cannot quote	m/sec m m ² m m ³ /min Nm ³ /min-we Nm ³ /min-dry % % mg/Nm ³
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Percent of Isokinetic Rate Particulate Uncertainty Calculation Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Instrumental Analyser - Historical Data & Hardware Information Analyser serial number, make & model	(V _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U) (U)	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal. Cannot quote Testo 350XL	m/sec m m ² m m m ³ /min Nm ³ /min-we Nm ³ /min-dry % % % mg/Nm ³
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Percent of Isokinetic Rate Percent of Isokinetic Rate Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Instrumental Analyser - Historical Data & Hardware Information Analyser Run Start Time	(v _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U) (U) (U) Ti Tf	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal. Cannot quote Testo 350XL 12:10	m/sec m m² m m m³/min Nm³/min-we Nm³/min-we Nm³/min-dry % % % % mg/Nm³
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of lookinetic Rate Percent of lookinetic Rate Particulate Uncertainty Calculation Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Instrumental Analyser - Historical Data & Hardware Information Analyser Run Start Time Analyser Run Stop Time Analyser Run Stop Time	(v _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U) (U) (U)	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal. Cannot quote Testo 350XL 12:10 12:59	m/sec m m² m m m³/min Nm³/min-we Nm³/min-dry % Nm³/min-dry % % % % mg/Nm³
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Particulate Uncertainty Calculation Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Instrumental Analyser - Historical Data & Hardware Information Analyser Run Start Time Analyser Run Start Time Analyser Total Sampling Time Instrumental Analyser Raw Data Averages	(V _s) Ds (A _s) B A (Q _{aw}) (Q _{aw}) ((a _{sw}) ((b _{sw}) ((b) (U) (U) (U) (U) (U) (U) (U) (U) (U)	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal. Cannot quote Testo 350XL 12:10 12:59 0:49	m/sec m m ² m m ³ /min Nm ³ /min-we Nm ³ /min-dry % % mg/Nm ³ % mg/Nm ³
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Particulate Uncertainty Calculation Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Instrumental Analyser - Historical Data & Hardware Information Analyser Run Start Time Analyser Run Start Time Analyser Total Sampling Time Instrumental Analyser Raw Data Averages Oxides of Nitrogen	(v _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U) (U) (U) Ti Tf	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal. Cannot quote Testo 350XL 12:10 12:59	m/sec m m ² m m m ³ /min Nm ³ /min-we Nm ³ /min-dry % % % % % % % walve hh:mm
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Particulate Uncertainty Calculation Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Instrumental Analyser - Historical Data & Hardware Information Analyser Run Start Time Analyser Run Start Time Analyser Total Sampling Time Instrumental Analyser Raw Data Averages Oxides of Nitrogen (USEPA Method 7E - instrumental analyser)	(V _s) Ds (A _s) B A (Q _{aw}) (Q _{aw}) (Q _{ad}) (I) (U) (U) (U) (U) (U) (U) (U) (U) (U) (U	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal. Cannot quote Testo 350XL 12:10 12:59 0:49 80.83	m/sec m m ² m m m ³ /min Nm ³ /min-we Nm ³ /min-we Nm ³ /min-dry % M M M M M M M M M M M M M M M M M M
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Particulate Uncertainty Calculation Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Instrumental Analyser - Historical Data & Hardware Information Analyser Run Start Time Analyser Run Start Time Analyser Total Sampling Time Instrumental Analyser (USEPA Method 7E - instrumental analyser) Nitrogen Oxides (NOx as NO ₂)	(V _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U) (U) (U) (U) (U) (U) (U) (U) (U) (U	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal. Cannot quote Testo 350XL 12:10 12:59 0:49 80.83 166.0	m/sec m m ² m m ³ /min Nm ³ /min-we Nm ³ /min-we Nm ³ /min-we Nm ³ /min-dry % M M M M M M M M M M M M M M M M M M
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Particulate Uncertainty Calculation Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Instrumental Analyser - Historical Data & Hardware Information Analyser Run Start Time Analyser Run Start Time Analyser Run Start Time Analyser Total Sampling Time Instrumental Analyser (USEPA Method 7E - instrumental analyser) Nitrogen Oxides of Nitrogen (USEPA Method 7E - instrumental analyser) Nitrogen Oxides at 5 % O2	(V _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U) (U) (U) (U) (U) (U) (U) (U) (U) (U	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal. Cannot quote Testo 350XL 12:10 12:59 0.49 80.83 166.0 243.9	m/sec m m ² m m m ³ /min Nm ³ /min-we Nm ³ /min-we Nm ³ /min-we Nm ³ /min-we % Mg/Nm ³ value hh:mm hh:mm hh:mm hh:mm hh:mm hh:mm
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Naty Percent Rate Percent of Isokinetic Rate Analyser Total Sampling Time Analyser Total Sampling Time Analyser Rate Data Averages Oxides of Nitrogen (USEPA Method 7E - instrumental Analyser) Nitrogen Oxides (NOX as NO ₂)	(V _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U) (U) (U) (U) (U) (U) (U) (U) (U) (U	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal. Cannot quote Testo 350XL 12:10 12:59 0:49 80.83 166.0	m/sec m m ² m m ³ /min Nm ³ /min-we Nm ³ /min-we Nm ³ /min-we Nm ³ /min-dry % M Mg/Nm ³ value hh:mm hh:mm hh:mm hh:min mg/Nm ³
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Percent of Isokinetic Rate Percent of Isokinetic Rate Percent of Isokinetic Rate Percent of Stack Flow Rate Instrumental Analyser - Historical Data & Hardware Information Analyser serial number, make & model Analyser Run Start Time Analyser Run Start Stop Nitrogen Oxides of Nitrogen Nitrogen Oxides (NOX as NO ₂) Nitrogen Oxides (NOX as NO ₂) OTHER ANALYTES (PLEASE SPECIFIY)	(V _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U) (U) (U) (U) (U) (U) (U) (U) (U) (U	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal. Cannot quote Testo 350XL 12:10 12:59 0:49 80.83 166.0 243.9 19.15	m/sec m m ² m m ³ /min Nm ³ /min-wel Nm ³ /min-wel Nm ³ /min-dry % % % mg/Nm ³ value hh:mm hh:mm hh:min ppm mg/Nm ³ mg/Nm ³
Volumetric Flow Rate Data (at Sample Plane) Average Stack Gas Velocity Stack Diameter Stack Cross-Sectional Area Upstream distance (from disturbance) Downstream distance (from disturbance) Actual Stack Flow Rate Wet Standard Stack Flow Rate Dry Standard Stack Flow Rate Percent of Isokinetic Rate Percent of Isokinetic Rate Percent of Isokinetic Rate Percent of Isokinetic Rate Percent of Stack Flow Rate Cuncertainty expressed at 95%CI Uncertainty expressed at 95%CI Uncertainty expressed at 95%CI Instrumental Analyser - Historical Data & Hardware Information Analyser serial number, make & model Analyser Run Start Time Analyser Run Start Time Analyser Run Stop Time Analyser Run Stop Time Analyser Raw Data Averages Oxides of Nitrogen (USEPA Method 7E - instrumental analyser) Nitrogen Oxides (NOx as NO ₂)	(V _s) Ds (A _s) B A (Q _{sw}) (Q _{sw}) (Q _{sw}) (Q _{sd}) (I) (U) (U) (U) (U) (U) (U) (U) (U) (U) (U	20.93 0.480 0.181 1.40 1.90 227.2 130.2 115.4 N/A Non ideal. Cannot quote Testo 350XL 12:10 12:59 0.49 80.83 166.0 243.9	m/sec m m ² m m ³ /min Nm ³ /min-wet Nm ³ /min-wet % % mg/Nm ³ value hh:mm hh:mm hh:mm hh:mm hh:mm mg/Nm ³

6 OPERATING CONDITIONS

Name: Comment: Toohey's Number: 9296876 Engine type TCG2020V2 Serial numb 233500100-	20 xer C		-P:						19 PL 20 PL 20 Vi 30 Se	LC 0 9.03 LC r 50.2 LC 0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.	202 elea 21-m xper 33 lisat	21 ase: 103 atin ion: nbe	gs) : rBF	RT:	m:		N GO A A O G G	umit tate pera ctua ctua pera tarta	er o Lo ation po l sp ation 5: 14	ad n wer eed 1 ho 192 mbe	arm un xde: : 19 : 14 urs:	5: 3 Mair 80 k 99.1 : 148	W 1/m	nin		,	MWM	
	Overview	Fonioe		Heating/cooling circuits	Air/Generator	tradition conserva-	Biene unnifi	Wastegate	Data/counted measurands			Operating information													Boreanshot	19.03.2021		
12.3		Mains	98.9 %		{	100.0%	96.66	38.4 %	1429.3 1Jmin	45.8.96			0° 2.59	4.58 bar		102.8%				434 ° C						0		
Ю Г			< {					<		45.5%										0° 364						Bearing Jubrication is du		
Ц ©	Speed, power	Operation mode	E199.7 Demand active		Power switch	E199.6 Power limit	E199.4 Set power	E198.2 Actual power	S200 Engine speed	Throtte velve		Lube pil	T208 Lube oil	P196 Lube oil before filter		L234.1 Lube of level		Exhaust		Exhaust after ATL						0 3 Bearing 1		
	B side	352 °C	343 °C	31 #5E	357 °C	344 °C	340 °C	324 °C	352 °C	355 °C	350 °C	56.7 °C								44.8 °C	80.1 °C	92.6 °C		-2.6 mbar		1980 KW		
	A side	352 ° C	324 °C	3° E2E	361 °C	30 °C	341 °C	343 °C	0. ¥CE	0.899 0	345 °C	74.0 °C	351 °C		-75 Steps			34.7 °C	54.5 °C	niet	ne inlet	ne outlet				Dead run		
Data	Comb. chamber	Cylinder 1	Cylinder 2	Cyfinder 3	Cydinder 4	Cytinder 5	Cylinder 6	Cylinder 7	Cylinder 8	Cylinder 9	Cylinder 10	Cold junction	Average value		Gas mixer		Measured values	Intake air	Raceiver	T202 Jacket water GK Inlet	T207 Jacket water engine inlet	T206 Jacket water engine outet		P145 Crankcase		- Auto		

Name: Comment: Toohey's Number: 9296876 Engine type: TCG2020V20 Serial number CPU-P: 233500100-01891	PLC date: 19.03.2021 PLC release: 2.50.21-m03 PLC operating system: 2.53.03 Visualisation: 3.4.2 Serial number BRT: 26030040114483	Number of faults: 0 Number of alarms: 3 State: Load run Operation mode: Mains Actual power: 1970 kW Actual speed: 1499.3 1/min Operation hours: 14825 Starts: 1492 Serial number DZR: 832800092	MWM
Image: Constraint of the second of the se	Defatiounted measurends Power reduction Operating information	Bcreanshot	19.03.2021
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			lubrication ie due lestis6 Appare
<i>∾</i>			0 3 Bearing 19.12.2031
14825 h 14825 h 14825 h 1482 0 0 511.0020 1482	ц 88 00 7		1920 KW
don gas type A n total	8 7 7 7	07 %	Auto Load run Make 11.01.021 0024
Data Operating mixmeston Operation hours gas type A Operation hours in total Black start Starts Last cil change At operation hours	Operation hours analysis Operation hours analysis Lead value G > 95% 81.85% 30.50%	%00 Y	- ¢

Name: Comment: Toohey's Number: 9296876 Engine type: TCG2020V20 Serial number CPU- 233500100-01891	P:			19.00 PLC 2.50. PLC 2.53. Visus 3.4.2 Seria	alisati	1 503 ating on: nber	BR		с.		Numi State Open Actua Actua Starta Starta Seria	ber of ation al pow al spe ation 5: 149	alar mod ver: 1 ed: 1 hour 2 iber 1	ms: 3 e: Ma 1982 1499.1 s: 14	iins kW 1 1/m 825	in		M	wm
© Emináres ✓	Selection		Halace	 Update 	🕒 Absolute time	Export	Baue		Load	Print	 Permanently active 	100%	Pause	< Cursor Cursor >	< Window >		Boreanshot	19.03.2021	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14	 	1 8240 Expire speed 1401 5		/ P145 Crunkase -1.8	T4127 Comh chantar arac 350	T42X7 Com. chan. B war. 341	🔫 G197 Throthe valve 🕴 🕴	GL77 Throtte valve B +1.8	T459 Generator baaring A 54.8		G177.4 Current actuator B 1.00	GER.A Current software 0.86				_	Bearing lubrication is due 19.12.2021 19.51:56 Appawe	
I ©••						and the way	and the second sec	-marken mark				ANA AD SAVANA SAVANA ANA ANA ANA SAVA - GITTA CUMUT SCIENCE	A had been an indian		-10- -	19.03.2021 - 12.27:31		1982 KW 0 3 Bearing 1482 Timus 0 1 2 Bearing	
λ,						man and man and a second and as second and a		man and a second a							dis' -dis' -dis'			1 Auto Load run Maise 11.01.3021 06:24:21	
History						A A A		mour				Abiteda	_	-	-ÿ			¢	

RELEVANT NSW EPA EPL 1167 EXTRACTS 7

Section 55 Protection of the Environment Operations Act 1997

Environment Protection Licence

Licence - 1167

POINT 7

Pollutant

Nitrogen Oxides

compounds as n-propane equivalent

volatile

organic

ent Protect	tion Licenc	PA		
Units of measure	100 percentile concentration limit	Reference conditions	Oxygen correction	Averaging period
milligrams per cubic metre	250	Dry, 273k, 101.3kPa,	5%	As per test method
milligrams per cubic metre	40	Dry, 273k, 101.3kPa,	5%	As per test method

Figure 8: EPL 1167 Limits

POINT 7

Pollutant	Units of measure	Frequency	Sampling Method
Dry gas density	kilograms per cubic metre	Yearly	TM-23
Moisture	percent	Yearly	TM-22
Molecular weight of stack gases	grams per gram mole	Yearly	TM-23
Nitrogen Oxides	milligrams per cubic metre	Yearly	TM-11
Temperature	degrees Celsius	Yearly	TM-2
Velocity	metres per second	Yearly	TM-2
volatile organic compounds as n-propane equivalent	milligrams per normalised cubic metre	Yearly	TM-34

Environment Protection Authority - NSW 25-Feb-2019 Licence version date:

Page 11 of 20

Figure 9: EPL 1167 Frequency & Test Methods

8 LAB ANALYTICAL TEST DATA

8.1 Chain of Custody

					12(2) 12(2)
TECHNICAL - LABORATORY			12/21	COMPRANED BY DA	why then
Version 10.5		st number: 13594	13594 Monday, 22 March 2021 Landrad Standard		Bred. O
Authorised by DL	AT COO LA	AE CUC for project number: 13594	r ort	NOTE	A lane
Last modified A 14/01/2021 E			AE Project ID: Date Sent: Lab Report Number Lab Report Number Received by DUE DATE	USEPA MIB / WCA 207	Tuke not lanested. Outpretern Package. E.Contre 23/3/21
	EXTERNAL ANALYSIS		tenv.com.au adenv.com.au denv.com.au	Specialed VOCs & total VOC as n-propare	ONCE RECEIVED AT YOUR LAB
File Name LAB COC FORM	EXTERNAL AE COT (consistent and been able	AE COC IOI DIOJECT	Primary Contract David Abuckle Phone: <u>0733331 1960</u> Email: <u>david@assure</u> CC: <u>finance@assure</u>	Carbon Tube Carbon Tube	SAMPLES
Doc number F101.007.001		TO GO TO:	Attention: Martin Mazereeuw Lab Name: TarsiSate Lab Address: LEVEL 2 BUILDING 1 TarsiSate Tarsi CHILVERS ROAD THORNLEIGH NEW 2120 AUSTRALIA	Processon Decision Decision Decision	PLEASE FORWARD A <u>SAMPLE RECEIPT</u> OF THES Please retain samples for a minimum of <u>2 months</u> Signed By:
P P		SAMPLES	Attention: Ma Lab Name: Lab Address: Le 7H TH AU	13894 10 13894	PLEASE FORWARD A <u>SAMPLE RE</u> Please retain samples for a minimu Signed By:

8.2 Test Safe Australia Analytical Report

Lab. Reference: 202

2021-1369

David Arbuckle Assured Environmental Pty Ltd Unit 7 142 Tennyson Memorial Avenue TENNYSON QLD 4105

Samples analysed as received

SAMPLE ORIGIN: AE Project ID: 13594

DATE OF INVESTIGATION: Not Stated

DATE RECEIVED: 23/03/21

ANALYSIS REQUIRED: Volatile Organic Compounds

REPORT OF ANALYSIS

See attached sheet(s) for sample description and test results.

The results of this report have been approved by the signatory whose signature appears below.

For all administrative or account details please contact the Laboratory.

Increment and total pagination can be seen on the following pages.

ahereeuo Martin Mazereeuw

Manager

Date: 26/03/21

TestSafe Australia – Chemical Analysis Branch Level 2, Building 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia T: +61 2 9473 4000 E: <u>lab@safework.nsw.gov.au</u> W: <u>testsafe.com.au</u> ABN 81 913 830 179

Page 1

Accreditation No. 3726 Accredited for compliance with ISO/IEC 17025 - Testing SafeWork NSW

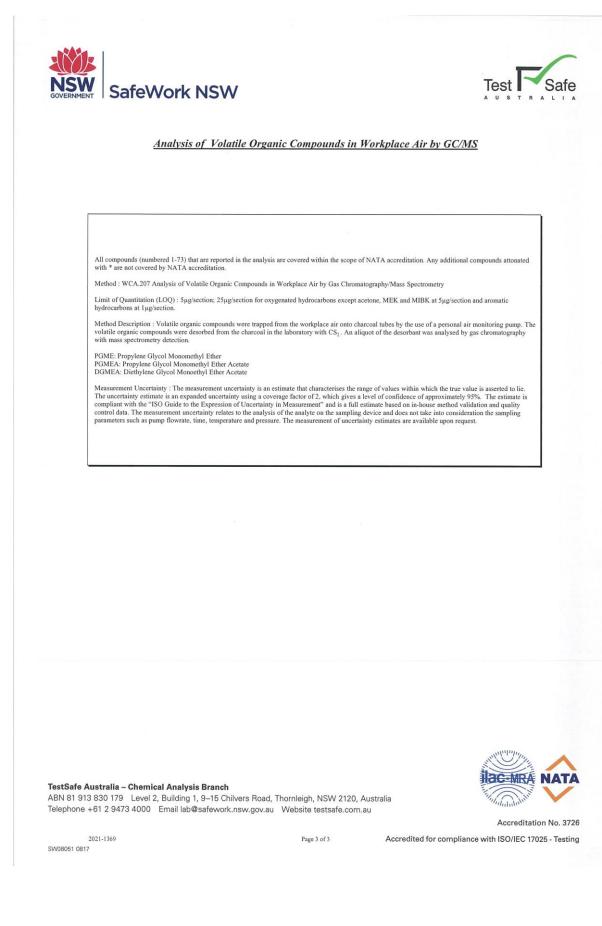
Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

	Client: Assured Environn Sample ID: 13594	nental				Date	e Sampled e Analysed e Number	24/03/20			
No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back		
	Compounds	CASINO	μg/se	ection		Compounds	CASINO	μg/se	ction		
	Aliphatic hydrocarbon	S (LOQ = 5μg/co	OQ = 5µg/compound/section) Aromatic hydrocarbons (LOQ = 1µg/compound/section)								
1	2-Methylbutane	78-78-4	<loq< td=""><td><loq< td=""><td>39</td><td>Benzene</td><td>71-43-2</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>39</td><td>Benzene</td><td>71-43-2</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	39	Benzene	71-43-2	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
2	n-Pentane	109-66-0	<loq< td=""><td><loq< td=""><td>40</td><td>Ethylbenzene</td><td>100-41-4</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>40</td><td>Ethylbenzene</td><td>100-41-4</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	40	Ethylbenzene	100-41-4	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
3	2-Methylpentane	107-83-5	<loq< td=""><td><loq< td=""><td>41</td><td>Isopropylbenzene</td><td>98-82-8</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>41</td><td>Isopropylbenzene</td><td>98-82-8</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	41	Isopropylbenzene	98-82-8	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
4	3-Methylpentane	96-14-0	<loq< td=""><td><loq< td=""><td>42</td><td>1,2,3-Trimethylbenzene</td><td>526-73-8</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>42</td><td>1,2,3-Trimethylbenzene</td><td>526-73-8</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	42	1,2,3-Trimethylbenzene	526-73-8	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
5	Cyclopentane	287-92-3	<loq< td=""><td><loq< td=""><td>43</td><td>1,2,4-Trimethylbenzene</td><td>95-63-6</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>43</td><td>1,2,4-Trimethylbenzene</td><td>95-63-6</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	43	1,2,4-Trimethylbenzene	95-63-6	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
6	Methylcyclopentane	96-37-7	<loq< td=""><td><loq< td=""><td>44</td><td>1,3,5-Trimethylbenzene</td><td>108-67-8</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>44</td><td>1,3,5-Trimethylbenzene</td><td>108-67-8</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	44	1,3,5-Trimethylbenzene	108-67-8	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
7	2,3-Dimethylpentane	565-59-3	<loq< td=""><td><loq< td=""><td>45</td><td>Styrene</td><td>100-42-5</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>45</td><td>Styrene</td><td>100-42-5</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	45	Styrene	100-42-5	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
8	n-Hexane	110-54-3	<loq< td=""><td><loq< td=""><td>46</td><td>Toluene</td><td>108-88-3</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>46</td><td>Toluene</td><td>108-88-3</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	46	Toluene	108-88-3	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
9	3-Methylhexane	589-34-4	<loq< td=""><td><loq< td=""><td>47</td><td>p-Xylene &/or m-Xylene</td><td>106-42-3 & 108-38-3</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>47</td><td>p-Xylene &/or m-Xylene</td><td>106-42-3 & 108-38-3</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
10	Cyclohexane	110-82-7	<loq< td=""><td><loq< td=""><td>48</td><td>o-Xylene</td><td>95-47-6</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>48</td><td>o-Xylene</td><td>95-47-6</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	48	o-Xylene	95-47-6	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
11	Methylcyclohexane	108-87-2	<loq< td=""><td><loq< td=""><td></td><td>Ketones (LOQ #49, #54 & #55</td><td></td><td>1, #52 & #53</td><td>=25µg/c/s)</td></loq<></td></loq<>	<loq< td=""><td></td><td>Ketones (LOQ #49, #54 & #55</td><td></td><td>1, #52 & #53</td><td>=25µg/c/s)</td></loq<>		Ketones (LOQ #49, #54 & #55		1, #52 & #53	=25µg/c/s)		
12	2,2,4-Trimethylpentane	540-84-1	<loq< td=""><td><loq< td=""><td>49</td><td>Acetone</td><td>67-64-1</td><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>49</td><td>Acetone</td><td>67-64-1</td><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<>	49	Acetone	67-64-1	<loq< td=""><td><loc< td=""></loc<></td></loq<>	<loc< td=""></loc<>		
13	n-Heptane	142-82-5	<loq< td=""><td><loq< td=""><td>50</td><td>Acetoin</td><td>513-86-0</td><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>50</td><td>Acetoin</td><td>513-86-0</td><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<>	50	Acetoin	513-86-0	<loq< td=""><td><loc< td=""></loc<></td></loq<>	<loc< td=""></loc<>		
14	n-Octane	111-65-9	<loq< td=""><td><loq< td=""><td>51</td><td>Diacetone alcohol</td><td>123-42-2</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>51</td><td>Diacetone alcohol</td><td>123-42-2</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	51	Diacetone alcohol	123-42-2	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
15	n-Nonane	111-84-2	<loq< td=""><td><loq< td=""><td>52</td><td>Cyclohexanone</td><td>108-94-1</td><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>52</td><td>Cyclohexanone</td><td>108-94-1</td><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<>	52	Cyclohexanone	108-94-1	<loq< td=""><td><loc< td=""></loc<></td></loq<>	<loc< td=""></loc<>		
16	n-Decane	124-18-5	<loq< td=""><td><l00< td=""><td>53</td><td>Isophorone</td><td>78-59-1</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l00<></td></loq<>	<l00< td=""><td>53</td><td>Isophorone</td><td>78-59-1</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l00<>	53	Isophorone	78-59-1	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
17	n-Undecane	1120-21-4	<loq< td=""><td><l0q< td=""><td>54</td><td>Methyl ethyl ketone (MEK)</td><td>78-93-3</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td>54</td><td>Methyl ethyl ketone (MEK)</td><td>78-93-3</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l0q<>	54	Methyl ethyl ketone (MEK)	78-93-3	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
18	n-Dodecane	112-40-3	<loq< td=""><td><loq< td=""><td>55</td><td>Methyl isobutyl ketone (MIBK)</td><td>108-10-1</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>55</td><td>Methyl isobutyl ketone (MIBK)</td><td>108-10-1</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	55	Methyl isobutyl ketone (MIBK)	108-10-1	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
19	n-Tridecane	629-50-5	<loq< td=""><td><loq< td=""><td></td><td>Alcohols (LOQ = 25µg/compo</td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Alcohols (LOQ = 25µg/compo</td><td></td><td></td><td></td></loq<>		Alcohols (LOQ = 25µg/compo					
20	n-Tetradecane	629-59-4	<l0q< td=""><td><loq< td=""><td>56</td><td>Ethyl alcohol</td><td>64-17-5</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td>56</td><td>Ethyl alcohol</td><td>64-17-5</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	56	Ethyl alcohol	64-17-5	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
21	α-Pinene		<l0q< td=""><td><loq< td=""><td>57</td><td>n-Butyl alcohol</td><td></td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td>57</td><td>n-Butyl alcohol</td><td></td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	57	n-Butyl alcohol		<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
22	β-Pinene	80-56-8	<l0q< td=""><td><l0q< td=""><td>58</td><td>Isobutyl alcohol</td><td>71-36-3</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td>58</td><td>Isobutyl alcohol</td><td>71-36-3</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></l0q<>	58	Isobutyl alcohol	71-36-3	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>		
23	D-Limonene	127-91-3	<l0q< td=""><td><l0q< td=""><td>59</td><td>Isopropyl alcohol</td><td>78-83-1</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td>59</td><td>Isopropyl alcohol</td><td>78-83-1</td><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></l0q<>	59	Isopropyl alcohol	78-83-1	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>		
		138-86-3			60	2-Ethyl hexanol	67-63-0	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>		
24	Chlorinated hydrocart Dichloromethane	1	1	1	61	Cyclohexanol	104-76-7				
24		75-09-2	<l0q< td=""><td><l0q< td=""><td>01</td><td></td><td>108-93-0</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td>01</td><td></td><td>108-93-0</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></l0q<>	01		108-93-0	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
25	1,1-Dichloroethane	75-34-3	<l0q< td=""><td><l0q< td=""><td>0</td><td>Acetates (LOQ = 25µg/compo</td><td></td><td>100</td><td>1.00</td></l0q<></td></l0q<>	<l0q< td=""><td>0</td><td>Acetates (LOQ = 25µg/compo</td><td></td><td>100</td><td>1.00</td></l0q<>	0	Acetates (LOQ = 25µg/compo		100	1.00		
26	1,2-Dichloroethane	107-06-2	<loq< td=""><td><loq< td=""><td>62</td><td>Ethyl acetate</td><td>141-78-6</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>62</td><td>Ethyl acetate</td><td>141-78-6</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	62	Ethyl acetate	141-78-6	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
	Chloroform	67-66-3	<loq< td=""><td><loq< td=""><td>63</td><td>n-Propyl acetate</td><td>109-60-4</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>63</td><td>n-Propyl acetate</td><td>109-60-4</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	63	n-Propyl acetate	109-60-4	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
28	1,1,1-Trichloroethane	71-55-6	<loq< td=""><td><loq< td=""><td>64</td><td>n-Butyl acetate</td><td>123-86-4</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>64</td><td>n-Butyl acetate</td><td>123-86-4</td><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	64	n-Butyl acetate	123-86-4	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>		
29	1,1,2-Trichloroethane	79-00-5	<loq< td=""><td><loq< td=""><td>65</td><td>Isobutyl acetate</td><td>110-19-0</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>65</td><td>Isobutyl acetate</td><td>110-19-0</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	65	Isobutyl acetate	110-19-0	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
30	Trichloroethylene	79-01-6	<loq< td=""><td><loq< td=""><td></td><td>Ethers (LOQ = 25µg/compound</td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Ethers (LOQ = 25µg/compound</td><td></td><td></td><td></td></loq<>		Ethers (LOQ = 25µg/compound					
31	Carbon tetrachloride	56-23-5	<loq< td=""><td><loq< td=""><td>66</td><td>Ethyl ether</td><td>60-29-7</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>66</td><td>Ethyl ether</td><td>60-29-7</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	66	Ethyl ether	60-29-7	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
32	Perchloroethylene	127-18-4	<loq< td=""><td><loq< td=""><td>67</td><td>tert -Butyl methyl ether (MTBE)</td><td>1634-04-4</td><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>67</td><td>tert -Butyl methyl ether (MTBE)</td><td>1634-04-4</td><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<>	67	tert -Butyl methyl ether (MTBE)	1634-04-4	<loq< td=""><td><loc< td=""></loc<></td></loq<>	<loc< td=""></loc<>		
33	1,1,2,2-Tetrachloroethane	79-34-5	<loq< td=""><td><loq< td=""><td>68</td><td>Tetrahydrofuran (THF)</td><td>109-99-9</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>68</td><td>Tetrahydrofuran (THF)</td><td>109-99-9</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	68	Tetrahydrofuran (THF)	109-99-9	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
34	Chlorobenzene	108-90-7	<loq< td=""><td><loq< td=""><td></td><td>Glycols (LOQ = 25µg/compour</td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Glycols (LOQ = 25µg/compour</td><td></td><td></td><td></td></loq<>		Glycols (LOQ = 25µg/compour					
35	1,2-Dichlorobenzene	95-50-1	<loq< td=""><td><loq< td=""><td>69</td><td>PGME</td><td>107-98-2</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>69</td><td>PGME</td><td>107-98-2</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	69	PGME	107-98-2	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
36	1,4-Dichlorobenzene	106-46-7	<loq< td=""><td><loq< td=""><td>70</td><td>Ethylene glycol diethyl ether</td><td>629-14-1</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>70</td><td>Ethylene glycol diethyl ether</td><td>629-14-1</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	70	Ethylene glycol diethyl ether	629-14-1	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
	Miscellaneous (LOQ #37=	5µg & #38=25µg	T	1	71	PGMEA	108-65-6	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
37	Acetonitrile	75-05-8	<loq< td=""><td><loq< td=""><td>72</td><td>Cellosolve acetate</td><td>111-15-9</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>72</td><td>Cellosolve acetate</td><td>111-15-9</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	72	Cellosolve acetate	111-15-9	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
38	n-Vinyl-2-pyrrolidinone	88-12-0	<loq< td=""><td><loq< td=""><td>73</td><td>DGMEA</td><td>112-15-2</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>73</td><td>DGMEA</td><td>112-15-2</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	73	DGMEA	112-15-2	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		
	Extra compound (LOQ-					Extra compound (LOQ =	25µg/compound/				
74	Bromopropane *	106-94-5	<loq< td=""><td><loq< td=""><td>75</td><td>Naphthalene *</td><td>91-20-3</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>75</td><td>Naphthalene *</td><td>91-20-3</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	75	Naphthalene *	91-20-3	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>		

2021-1369

TestSafe Australia – Chemical Analysis Branch

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au



SW08051 0817

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

